Yayın Bilgileri

Yazarlar YY Baydilli, U Atila, A Elen
Tip Diğer
Sayfalar 0-9

Özet

Background and objective: Traditional machine learning methods assume that both training and test data come from the same distribution. In this way, it becomes possible to achieve high successes when modelling on the same domain. Unfortunately, in real-world problems, direct transfer between domains is adversely affected due to differences in the data collection process and the internal dynamics of the data. In order to cope with such drawbacks, researchers use a method called “domain adaptation”, which enables the successful transfer of information learned in one domain to other domains. In this study, a model that can be used in the classification of white blood cells (WBC) and is not affected by domain differences was proposed.Methods: Only one data set was used as source domain, and an adaptation process was created that made possible the learned knowledge to be used effectively in other …
Geri Dön